Research on how the form of vibration affects the efficiency of the axial oscillation tool.

Authors

Keywords:

генератор осьових коливань, сили тертя, вібрації, передача осьового навантаження, енергія коливань, бурильна колона, похило-скероване буріння, імітаційне моделювання, Modelica.

Abstract

This study assesses the performance of drill string axial oscillation tool utilizing different excitation force waveforms. A numerical investigation was conducted using a simulation model of the drill string developed in Modelica. The model represents a composite beam with distributed parameters along its length, equipped with an axial oscillation tool, and positioned in an inclined wellbore filled with drilling fluid.

The simulation employs the soft-string model to represent the drill string dynamics. Viscous interaction between the drill string and the drilling fluid is accounted for, while contact with the wellbore wall is described using the Stribeck friction model. Six waveform types were investigated: harmonic, triangular, trapezoidal, the sum of two synchronous harmonic components, and modified triangular and trapezoidal shapes. These waveforms correspond to typical operational characteristics of existing axial oscillation tool or, based on reviewed literature, are expected to enhance friction reduction and can be generated using available technology.

All cases were simulated using the same excitation frequency. The amplitude of each waveform was selected to yield an identical root mean square (RMS) value, ensuring equivalent energy input for vibration generation.

Simulation results for a drill string section located in an inclined wellbore with an azimuth angle of 39° indicate that trapezoidal excitation provides the most favorable performance. Overall, the comparative analysis shows that axial oscillation tool efficiency increases with the RMS value of the normalized waveform function. Consequently, flatter (less peaked) and more energy-dense waveforms are the most effective for improving axial load transmission and overcoming friction.

Downloads

Download data is not yet available.

References

Tang L., Zhang S., Zhang X., Ma L., Pu B. A review of axial vibration tool development and application for friction-reduction in extended reach wells. Journal of Petroleum Science and Engineering. 2021: Vol. 199. P.108348. DOI: 10.1016/J.PETROL.2021.108348.

Wang X., Yao X., Hu G., Chen P. Drag reduction performance of an axial oscillating tool with different kinds of waveform using a multiscale friction model. Journal of Petroleum Science and Engineering. 2019: Т. 177. C. 135–153. DOI: 10.1016/j.petrol.2019.01.103.

Zhang X., Peng J., Liu H., Wu D. Performance Analysis of a Fluidic Axial Oscillation Tool for Friction Reduction with the Absence of a Throttling Plate. Applied Sciences. 2017: Т. 7 № 4. C. 360. DOI: 10.3390/app7040360.

Tian J., Hu S., Li Y., Yang Z., Yang L., Cai X., Zhu Y., Fu C. Vibration characteristics analysis and experimental study of new drilling oscillator. Advances in Mechanical Engineering. 2016: Т. 8 № 6. 168781401665209. DOI: 10.1177/1687814016652090.

Shor R. J., Dykstra M. W., Hoffmann O. J., Coming M. For Better or Worse: Applications of the Transfer Matrix Approach for Analyzing Axial and Torsional Vibration. SPE/IADC Drilling Conference and Exhibition, London, England, UK, 17-19 March. 2015. DOI: 10.2118/173121-MS.

Jing J., Liu W., Zhou Y. A feasible study for the working mechanism and parameter optimization of the agitator. Advances in Mechanical Engineering. 2019: Vol. 11 № 5. DOI: 10.1177/1687814019846995.

Liu Y., Chen P., Ma T., Wang X. An evaluation method for friction-reducing performance of hydraulic oscillator. Journal of Petroleum Science and Engineering. 2017: Vol. 157. P.107–116. DOI: 10.1016/j.petrol.2017.07.018.

Liu Y., Chen P., Wang X., Ma T. Modeling friction-reducing performance of an axial oscillation tool using dynamic friction model. Journal of Natural Gas Science and Engineering. 2016: Vol. 33. P.397–404. DOI: 10.1016/j.jngse.2016.05.034.

Popov M. The Influence of Vibration on Friction: A Contact-Mechanical Perspective. Frontiers in Mechanical Engineering. 2020: Т. 6. DOI: 10.3389/fmech.2020.00069.

Popov M., Popov V. L., Popov N. V. Reduction of friction by normal oscillations. I. Influence of contact stiffness. Friction. 2017: Vol. 5 № 1. P.45–55. DOI: 10.1007/s40544-016-0136-4.

Wang X.-M., Yao X.-M. Vibration Technologies for Friction Reduction to Overcome Weight Transfer Challenge in Horizontal Wells Using a Multiscale Friction Model. Lubricants. 2018: Vol. 6 № 2. P.53. DOI: 10.3390/lubricants6020053.

Слабий О. О., Гриджук Я. С., Кондур Т. І., Мохній І. Ю. Імітаційна модель бурильної колони з установленим генератором осьових коливань. Розвідка та розробка нафтових і газових родовищ. 2023 № 3(88). C. 49–60. DOI: 10.31471/1993-9973-2023-3(88)-49-60.

Published

19.12.2025

How to Cite

Slabyi, O. (2025). Research on how the form of vibration affects the efficiency of the axial oscillation tool. Oil and Gas Power Engineering, (2(44). Retrieved from https://www.nge.nung.edu.ua/index.php/nge/article/view/794

Issue

Section

SCIENTIFIC AND TECHNICAL PROBLEMS OF PETROLEUM ENGINEERING

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.